

General Certificate of Education Advanced Level Examination
June 2013

Mathematics

Unit Further Pure 2

Thursday 6 June 20139.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Sketch on an Argand diagram the locus of points satisfying the equation

$$
|z-6 \mathrm{i}|=3
$$

(b) It is given that z satisfies the equation $|z-6 \mathrm{i}|=3$.
(i) Write down the greatest possible value of $|z|$.
(ii) Find the greatest possible value of $\arg z$, giving your answer in the form $p \pi$, where $-1<p \leqslant 1$.
(3 marks)

2 (a) (i) Sketch on the axes below the graphs of $y=\sinh x$ and $y=\cosh x$.
(3 marks)
(ii) Use your graphs to explain why the equation

$$
(k+\sinh x) \cosh x=0
$$

where k is a constant, has exactly one solution.
(b) A curve C has equation $y=6 \sinh x+\cosh ^{2} x$. Show that C has only one stationary point and show that its y-coordinate is an integer.

3 The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2, \quad u_{n+1}=\frac{5 u_{n}-3}{3 u_{n}-1}
$$

Prove by induction that, for all integers $n \geqslant 1$,

$$
\begin{equation*}
u_{n}=\frac{3 n+1}{3 n-1} \tag{6marks}
\end{equation*}
$$

4 (a) Given that $\mathrm{f}(r)=r^{2}\left(2 r^{2}-1\right)$, show that

$$
\mathrm{f}(r)-\mathrm{f}(r-1)=(2 r-1)^{3}
$$

(b) Use the method of differences to show that

$$
\sum_{r=n+1}^{2 n}(2 r-1)^{3}=3 n^{2}\left(10 n^{2}-1\right)
$$

5
The cubic equation

$$
z^{3}+p z^{2}+q z+37-36 \mathrm{i}=0
$$

where p and q are constants, has three complex roots, α, β and γ.
It is given that $\beta=-2+3 \mathrm{i}$ and $\gamma=1+2 \mathrm{i}$.
(a) (i) Write down the value of $\alpha \beta \gamma$.
(ii) Hence show that $(8+i) \alpha=37-36 i$.
(iii) Hence find α, giving your answer in the form $m+n$ i, where m and n are integers.
(b) Find the value of p.
(c) Find the value of the complex number q.

6 (a) Show that $\frac{1}{5 \cosh x-3 \sinh x}=\frac{\mathrm{e}^{x}}{m+\mathrm{e}^{2 x}}$, where m is an integer.
(b) Use the substitution $u=\mathrm{e}^{x}$ to show that

$$
\int_{0}^{\ln 2} \frac{1}{5 \cosh x-3 \sinh x} \mathrm{~d} x=\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(\frac{1}{2}\right)
$$

7 (a) (i) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} u}\left(2 u \sqrt{1+4 u^{2}}+\sinh ^{-1} 2 u\right)=k \sqrt{1+4 u^{2}}
$$

where k is an integer.
(ii) Hence show that

$$
\int_{0}^{1} \sqrt{1+4 u^{2}} \mathrm{~d} u=p \sqrt{5}+q \sinh ^{-1} 2
$$

where p and q are rational numbers.
(b) The arc of the curve with equation $y=\frac{1}{2} \cos 4 x$ between the points where $x=0$ and $x=\frac{\pi}{8}$ is rotated through 2π radians about the x-axis.
(i) Show that the area S of the curved surface formed is given by

$$
S=\pi \int_{0}^{\frac{\pi}{8}} \cos 4 x \sqrt{1+4 \sin ^{2} 4 x} \mathrm{~d} x
$$

(ii) Use the substitution $u=\sin 4 x$ to find the exact value of S.

8 (a) (i) Use de Moivre's theorem to show that

$$
\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta
$$

and find a similar expression for $\sin 4 \theta$.
(ii) Deduce that

$$
\begin{equation*}
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} \tag{3marks}
\end{equation*}
$$

(b) Explain why $t=\tan \frac{\pi}{16}$ is a root of the equation

$$
t^{4}+4 t^{3}-6 t^{2}-4 t+1=0
$$

and write down the three other roots in trigonometric form.
(c) Hence show that

$$
\tan ^{2} \frac{\pi}{16}+\tan ^{2} \frac{3 \pi}{16}+\tan ^{2} \frac{5 \pi}{16}+\tan ^{2} \frac{7 \pi}{16}=28
$$

